Cluster simulation of two-dimensional relativistic fermions
نویسنده
چکیده
The (discrete) Gross-Neveu model is studied in a lattice realization with an N-component Majorana Wilson fermion field. It has an internal O(N) symmetry in addition to the euclidean lattice symmetries. The discrete chiral symmetry for vanishing mass is expected to emerge in the continuum limit only. The lattice theory is first recast in terms of two-valued bosonic link variables (dimers). In this representation, which coincides with the loop representation obtained earlier by Gattringer with the help of eight-vertex-models, the Boltzmann weight is essentially positive. While standard local updates are possible in this form we construct a further exact transformation where we generate dimer configurations as Peierls contours of an Ising model with a local action residing on plaquettes. For this model a Swendsen-Wang type cluster algorithm is constructed. At vanishing coupling it is numerically demonstrated to almost completely eliminate critical slowing down. Although further tests are required, an avenue to numerical studies of the Gross-Neveu model with unprecedented precision seems open.
منابع مشابه
جابهجایی انرژی فرمیونهای غیرنسبیتی برهمکنش کننده در فضای ناجابهجاگر
A local interaction in noncommutative space modifies to a non-local one. For an assembly of particles interacting through the contact potential, formalism of the quantum field theory makes it possible to take into account the effect of modification of the potential on the energy of the system. In this paper we calculate the energy shift of an assembly of non-relativistic fermions, interacting...
متن کاملCluster simulation of relativistic fermions in two space-time dimensions
For Majorana-Wilson lattice fermions in two dimensions we derive a dimer representation. This is equivalent to Gattringer’s loop representation, but is made exact here on the torus. A subsequent dual mapping leads to yet another representation in which a highly efficient Swendsen-Wang type cluster algorithm is constructed. It includes the possibility of fluctuating boundary conditions. It also ...
متن کاملNon-Relativistic Limit of Neutron Beta-Decay Cross-Section in the Presence of Strong Magnetic Field
One of the most important reactions of the URCA that lead to the cooling of a neutron star, is neutron beta-decay ( ). In this research, the energy spectra and wave functions of massive fermions taking into account the Anomalous Magnetic Moment (AMM) in the presence of a strong changed magnetic field are calculated. For this purpose, the Dirac-Pauli equation for charged and neutral fermions is ...
متن کاملشبیهسازی نسبیتی معادله ولاسوف برای انبساط پلاسما به خلاء
In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electro...
متن کاملAn Exactly Solvable Model of Fermions with Disorder
Non-perturbative results are obtained for multi-point correlation functions of the model of (2 + 1)-dimensional relativistic fermions in a random nonAbelian gauge potential. The results indicate that the replica symmetry for this model is unbroken. We calculate the diffuson propagator and show that DC-conductivity for this model is finite. 74.20.Fg, 11.10.Gh, 71.10.+x Typeset using REVTEX 1 In ...
متن کاملTwo and Three Dimensional Monte Carlo Simulation of Magnetite Nanoparticle Based Ferrofluids
We have simulated a magnetite nanoparticle based ferrofluid using Monte Carlo method. Two and three dimensional Monte Carlo simulations have been done using parallel computing technique. The aggregation and rearrangement of nanoparticles embedded in a liquid carrier have been studied in various particle volume fractions. Our simulation results are in complete agreement with the reported experim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007